
For source code, sample chapters, the Online Author Forum, and other resources, go to http://www.manning.com/kapelonis/

Comparing Spock and Junit
By Konstantinos Kapelonis, Java Testing with Spock

In the Java world, there has been so far only one solution for unit tests. The venerable JUnit framework is the obvious

choice and has become almost synonymous with unit testing. JUnit has the largest mind share among developers

who are entrenched in their traditions and don't want to look any further.

 Even TestNG which has several improvements and is also fully compatible with JUnit has failed to gain significant

traction.

 But fear not! A new testing solution is now available in the form of Spock. Spock is a testing framework written

in Groovy but able to test both Java and Groovy code. It is fully compatible with JUnit (it actually builds on top of the

JUnit runner) and provides a cohesive testing package that also includes mocking/stubbing capabilities

 It is hard to compare JUnit and Spock in a single article, because both tools have a different philosophy when it

comes to testing. JUnit is a Spartan library that provides the absolutely necessary thing you need to test and leaves

additional functionality (such as mocking and stubbing) to external libraries.

 Spock has a holistic approach, providing you a superset of the capabilities of JUnit, while at the same time

reusing its mature integration with tools and developments environments. Spock can do everything that JUnit does

and more, keeping backwards compatibility as far as test runners are concerned.

What follows is a brief tour of some Spock highlights.

Writing concise code with Groovy syntax

Spock is written in Groovy which is less verbose than Java. This means that Spock tests are more concise than the

respective JUnit tests. Of course this advantage is not specific to Spock itself. Any other Groovy testing framework

would probably share this trait. But at the moment only Spock exists in the Groovy world.

Here is the advantage in a visual way, shown in figure 1.

Figure 1 Amount of code in an application with JUnit and Spock tests

Spock is also a superset of the defacto testing framework for

Java: Junit. In this article, excerpted from Java Testing with

Spock, we will compare Spock with Junit.

http://www.manning.com/kapelonis/
http://www.manning.com/kapelonis/
http://www.manning.com/kapelonis/
http://www.manning.com/kapelonis/

For source code, sample chapters, the Online Author Forum, and other resources, go to http://www.manning.com/kapelonis/

Less code is easier to read, easier to debug, and easier to maintain in the long run.

Mocking and Stubbing with no external library

JUnit does not support Mocking and Stubbing on its own. There are several Java framework that fill this position.

This is the main reason that I got interested in Spock in the first place is the fact that it comes full batteries included

as mocking and stubbing are supported out of the box.

Figure 2 Spock is a superset of JUnit

I’ll let this example explain:

David goes into a software company and starts working on an existing Java code base. He’s already familiar with

JUnit (defacto testing framework for Java). While working on the project, he needs to write some unit tests that need

to run in specific order. JUnit does not support this. So David also includes TestNG in the project.

Later he realizes that he needs to use mocking for some very special features of the software (for example the

credit card billing module). He spends some time to research all the available Java libraries (there are many). He

chooses Mockito, and integrates it in the code base as well.

Months pass and David learns all about Behavior-Driven Development in his local Dev Meeting. He gets excited!

Again he researches the tools and selects JBehave for his project in order to accomplish BDD.

Meanwhile Jane is a junior developer that knows only vanilla Java. She joins the same company and gets

overwhelmed the first day because she has to learn 3-4 separate tools just to understand all the testing code.

In an alternate universe David starts working with Spock as soon as he joins the company. Spock has everything

he needs for all testing aspects of the application. He never needs to add another library or spend time researching

stuff as the project grows.

Jane joins the same company in this alternate universe. She asks David for hints on the testing code and he just

replies “Learn Spock and you will understand all testing code”. Jane is happy because she has to focus on a single

library instead of three.

Even though Spock does not offer a full featured BDD workflow (as JBehave), it still offers the capability to write

tests understandable by business analysts as shown in the next section.

Using English sentences in Spock tests and reports

Here is a bad JUnit test (I see these all the time). It contains cryptic method names that do not describe what is

being tested.

Listing 1.7 A JUnit test where method names are unrelated to business value

public class ClientTest {

 @Test

 public void scenario1() #A

 {

 CreditCardBilling billing = new CreditCardBilling();

 Client client client = new Client();

 billing.chargeClient(client,150);

 assertTrue("expect bonus",client.hasBonus()); #B

 }

 @Test

 public void scenario2() #A

http://www.manning.com/kapelonis/

For source code, sample chapters, the Online Author Forum, and other resources, go to http://www.manning.com/kapelonis/

 {

 CreditCardBilling billing = new CreditCardBilling();

 Client client client = new Client();

 billing.chargeClient(client,150);

 client.rejectsCharge();

 assertFalse("expect no bonus",client.hasBonus());

 }

#A A test method with a generic name

#B Non technical people cannot understand test

This code is only understandable by programmers. Also if the second test breaks, a project manager (PM) will see

the report and know that “scenario2” is broken. This report has no value for the PM since he does not know what

scenario2 does exactly without looking at the code.

Spock supports an English like flow. Compare the same example in Spock:

Listing 1.8 A Spock test where methods explain the business requirements

class BetterSpec extends spock.lang.Specification{

 def "Client should have a bonus if he spends more than 100 dollars"() {

 when: "a client buys something with value at least 100" #A

 def client = new Client();

 def billing = new CreditCardBilling();

 billing.chargeClient(client,150);

 then: "Client should have the bonus option active" #B

 client.hasBonus() == true

 }

 def "Client loses bonus if he does not accept the transaction"() {

 when: "a client buys something and later changes mind" #A

 def client = new Client();

 def billing = new CreditCardBilling();

 billing.chargeClient(client,150);

 client.rejectsCharge();

 then: "Client should have the bonus option inactive" #B

 client.hasBonus() == false

 }

}

#A Business description of test

#B human readable test result

Even if you are not a programmer, you can read just the English text in the code (sentences inside quotes) and get

the following:

 Client should have a bonus if he spends more than 100 dollars

o when a client buys something with value at least 100

o then Client should have the bonus option active

 Client loses bonus if he does not accept the transaction

o when a client buys something and later changes mind

o then Client should have the bonus option inactive

This is very readable. A business analyst could read the test, and ask questions for other cases (what happens if the

client spends 99.9? What happens if he changes his mind the next day and not immediately?)

Also if the second test breaks, the PM will see in the report a red bar with title “Client loses bonus if he does not

accept the transaction.” He instantly knows the severity of the problem (perhaps he decides to ship this version if he

considers it non-critical)

http://www.manning.com/kapelonis/

For source code, sample chapters, the Online Author Forum, and other resources, go to http://www.manning.com/kapelonis/

Facts about Spock

 Spock is an alternative Test Framework written in the Groovy programming language

 A test framework automates the boring and repetitive process of manual testing which is essential for any

large application codebase

 Although Spock is written in Groovy, it can test both Java and Groovy code

 Spock has built-in support for Mocking and Stubbing without an external library

 Spock follows the given-when-then code flow commonly associated with the Behavioral Driven Development

paradigm

 Both Groovy and Java build and run on the JVM. A large enterprise build can run both JUnit and Spock tests

in the same time.

 Spock uses the JUnit runner infrastructure and therefore is compatible with all existing Java infrastructure.

For example, code coverage with Spock is possible in the same way as JUnit.

 One for the killer features of Spock is the detail it gives when a test fails. JUnit only mentions the expected

and actual value, where Spock records the surrounding running environment mentioning the intermediate

results and allowing the developer to pinpoint the problem with greater ease than JUnit

 Spock can pave the way for full Groovy migration into a Java project if that is what you wish. Otherwise it is

perfectly possible to keep your existing JUnit tests in place and only use Spock in new code

http://www.manning.com/kapelonis/

