
1

For source code, sample chapters, the Online Author Forum, and other resources, go to
http://www.manning.com/fisher/

Spring Integration in Action
By Willie Wheeler, John Wheeler, and Joshua White

Java Management Extensions are a standard way of exposing runtime
information about a running Java application to allow monitoring and
runtime management of the application. In this article, based on chapter 14
of Spring Integration in Action, the author discusses the out-of-the-box
support for exposing information about message channels, message sources,
and message handlers and Spring Integration’s support for adapting JMX
concepts to Spring Integration messages and vice versa.

To save 35% on your next purchase use Promotional Code fisher1435 when
you check out at www.manning.com.

You may also be interested in…

JMX Support in Spring Integration

Java Management Extensions are a standard way of exposing runtime information about a running Java application
to allow the application’s monitoring and runtime management. Attributes exposed via JMX can either be read only,
such as the number of messages on a queue or read write such as the maximum number of database connections
allowed in a connection pool. In addition to exposing attributes, JMX allows operations to be exposed, this relates
directly to a Java method invocation with zero or more parameters. In addition to operations and attributes, JMX
has a concept of notifications which are essentially events emitted by a component. These are generally used to
notify listeners of some sort of problem rather than a more general form of inter-process or inter-component
communication. One of the advantages of using JMX is the tooling support with many monitoring systems
supporting JMX allowing operations teams to use the tooling they may already use to monitor hardware to also
monitor Java applications that expose information via JMX. Where JMX is not directly supported, it is also possible
to map some of the JMX concepts to other monitoring technologies for example JMX notifications can be mapped to
Simple Network Monitoring Protocol (SNMP) traps.

JMX is supported in Spring Integration in two ways. First, we’ll look at the out-of-the-box support for exposing
information about message channels, message sources, and message handlers. We’ll then look at Spring
Integration’s support for adapting JMX concepts to Spring Integration messages and vice versa.

Monitoring channels and endpoints with JMX
The out-of-the-box JMX support means that, by simply adding the configuration below, a wide range of information
about the runtime behavior of your application will be made available. The channel’s implementation will result in a
default set of information for all channels, additional information for channels that are pollable, and yet more
information for channels that are both pollable and backed by a queue. The type of monitoring applied is
determined by checking which of the interfaces MessageChannel, PollableChannel, and QueueChannel are
implemented by beans during the application’s initialization phase.

<jmx:mbean-export default-domain="quote" />

The default message channel implementation exposes the attributes shown in Table 1. Where an attribute relating
to rate or ratio over time is exposed, this is calculated using an exponential moving average. This allows for the
calculation of rates and ratios, which give a higher weight to more recent data items while at the same time
avoiding the need to constantly recalculate or to maintain a long list of data points. In applications requiring very

http://www.manning.com/fisher/
http://www.manning.com/fisher
http://www.manning.com/fisher
http://www.manning.com/
http://www.manning.com/�
http://www.manning.com/fisher�

2

For source code, sample chapters, the Online Author Forum, and other resources, go to
http://www.manning.com/fisher/

high performance or throughput it is worth considering that there will be some effect from observing this data over
time and, while the calculations are optimized, there is some computational overhead and some need for
synchronization of threads. Where the return type in Table 1 is shown as
org.springframework.integration.monitor.Statistics, a call to get the attribute will return an
instance of this class containing count, mean, max, min, and the standard deviation of the attribute.

Table 1 Default set of metrics exposed for message channels

Send count Int Number of messages sent to this channel. Includes unsuccessful message
sends that result in errors. Resending the same message a number of times
will increment this value repeatedly even where it is not successfully
processed.

Send rate Statistics Provides statistics relating to the rate of messages sent on this channel.
Includes a mean number of messages per second using the previously
mentioned exponential moving average approach. As for the send count,
retrying failed message sends will result in multiple entries for the purposes of
this statistic.

Time since last
send

Double Time in seconds since last successful or unsuccessful send.

Mean send rate Double Calculated mean number of messages sent per second.

Send duration Statistics Statistics related to successful send durations in seconds.

Min send duration Double Minimum recorded time for a successful send in milliseconds.

Max send duration Double Maximum recorded time for a successful send in milliseconds.

Mean send duration Double Mean milliseconds per successful send.

Standard deviation
of send duration

Double Standard deviation of measured milliseconds per successful send.

Send error count Int Number of sends that resulted in an error.

Mean error rate double Calculated mean per second of sent messages that resulted in an error.

Error rate Statistics Statistics relating to message sends resulting in an error.

Mean error ratio Double Mean per second ratio of messages causing an error, where 1 indicates no
successful sends and 0 indicates no errors.

The above attributes relate only to sending since the MessageChannel interface does not define any methods
related to the receiving messages. Channel implementations that cater to asynchronous receive operations where
the send does not result in a direct pass through to the receiver will additionally implement the interface. Where
this interface is PollableChannel, detected additional details related to receive operations will be exposed, as
detailed below.

Table 2 Additional metrics exposed for pollable channels

Receive count Int Calls to receive that returned a non-null result and did not result in an error.

Receive error count Int Calls to receive that resulted in an error.
Where a channel is backed by a queue, it is often useful to know how many messages are currently queued and
what the remaining capacity of the queue is. QueueChannel implementing classes additionally expose the metrics
shown in Table 3.

http://www.manning.com/fisher/

3

For source code, sample chapters, the Online Author Forum, and other resources, go to
http://www.manning.com/fisher/

Table 3 Additional metrics exposed for channels backed by a queue

Queue size Int Current number of messages queued and waiting to be received

Queue remaining
capacity

Int Message that can be queued before queue is full

Monitoring channels is useful for checking throughput and error rates; however, it is also useful to be able to
monitor Spring Integration components such as routers, transformers, and adapters, which act as message sources
and handlers.

Components that act as handlers implement the MessageHandler interface in some form. It may not be
obvious when writing a POJO router that it will effectively implement this interface; however, there will always be
either an adapter or a super class that implements this interface somewhere at runtime. Table 4 details the
MessageHandler metrics exposed for monitoring purposes.

Table 4 Metrics exposed for message handlers

Handle execution
count

int The number of calls that have been made to the
handleMessage(Message<?> message) method.

Handler error count int The number of calls to the handle message method that resulted in an error.

Error count int Message that can be queued before queue is full.

Handle duration Statistics Statistics relating to the duration in milliseconds of calls to the handle
message method.

Mean duration double Mean duration of handle calls in milliseconds.

Min duration double Min duration of handle calls in milliseconds.

Max duration double Max duration of handle calls in milliseconds.

Standard deviation
of duration

double Standard deviation for duration of handle calls.

Active count
duration

int The number of calls to handle message that are currently in process.

In addition to channel and handlers, the built-in support also exposes message sources. These will typically be
pollable sources of messages such as inbound JMS channel adapter where a scheduled task periodically calls
receive on the message source with any non null result then being published to a channel. In the case of the
message sources, a simple count of messages received in response to calls to receive will be maintained and
exposed as a JMX attribute.

In addition to exposing attributes mbean export in Spring Integration also exposes a number of operations. All
of the exposed components expose a reset operation that allows all metrics such as counts and rates to be reset to
zero. In addition, components that are active in that they have some scheduled periodic behavior such as polling a
channel generally implement the Spring Lifecycle interface, which defines stop, start, and isRunning
methods. These methods allow active components to be stopped individually without the need to stop the whole
application or application context. For convenience, MessageHandlers and MessageSource instances that
implement the Lifecycle interface have these methods exposed as JMX operations.

Integration using JMX adapters
In this section we will look at the support offered by Spring Integration for JMX notifications, operations and
attributes in turn. The JMX support offered by Spring Integration covers both inbound and outbound adapters.
Outbound adapters are primarily there to make it easy to manage and monitor Spring Integration applications. The
inbound adapters allow the use of Spring Integration to carry out the management and monitoring of an
application via JMX. It is also common to use Spring Integration both for the core application functionality and the
management and monitoring of the core application.

http://www.manning.com/fisher/

4

For source code, sample chapters, the Online Author Forum, and other resources, go to
http://www.manning.com/fisher/

One of the most common monitoring requirements for an application is that it should produce notifications when
things go wrong so problems can be addressed early rather than waiting until a small problem that no one has
noticed becomes a big show stopper of a problem. The best way to achieve this using JMX is through notifications,
which allow an application to send notification of a problem to subscribed listeners. The concept of a notification
maps well to a message and hence the support for JMX notifications takes the form of channel adapters, which map
between notifications and Spring Integration messages.

The inbound channel adapter is very simple to setup and requires a channel name and a JMX object name. The
below configuration assumes that there is a Spring bean named mBeanServer available.

<jmx:notification-listening-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher" />

Where not all notifications will be of interest to an application, an instance of
javax.management.NotificationFilter can be provided to the inbound channel adapter. The example
below also demonstrates use of an MBean server bean with a nonstandard name.

<jmx:notification-listening-channel-adapter id="adapter"
 channel="channel"
 mbean-server="someServer"
 object-name="example.domain:name=somePublisher"
 notification-filter="notificationFilter" />

The outbound equivalent is also very straightforward. The example below shows how to configure a notification-
publishing channel adapter that publishes Spring Integration messages as JMX notifications.

<context:mbean:export/>

<jmx:notification-publishing-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher" />

When it comes to JMX operations, Spring Integration provides support for operation invocations, where no result is
expected through a channel adapter implementation, and support for operation invocations, where a response is of
interest through a gateway implementation. In both cases, the invocation of the JMX operation is triggered by the
receipt of a Spring Integration Message, which is then used to determine the parameters to pass the operation, if
any are required.

Both the gateway and the channel implementations use the same strategy for mapping the inbound trigger
message to operation invocation parameters. Where the payload of the message is a Map, the payload is assumed
to be a set of key value pairs. Where a single parameter is expected, the payload itself will be assumed to be the
parameter. Where the JMX invocation does not expect a parameter the payload will be ignored in all cases.

Given that the adapter carries out the parameter mapping, all that is required is the JMX object name, the
operation name, the request channel name, and the name of the MBean server if it is not the default of
mbeanServer.

<jmx:operation-invoking-channel-adapter id="adapter" channel="requests"
 object-name="example.domain:name=TestBean"
 operation-name="ping" mbean-server="myMbeanServerRef" />

The operation-invoking gateway looks almost exactly the same except it allows for the configuration of a reply
channel.

<jmx:operation-invoking-outbound-gateway request-channel="requests"
 reply-channel="replyChannel"
 object-name="org...jmx.config:type=TestBean,name=testBeanGateway"
 operation-name="methodWithReturn" mbean-server="myMbeanServerRef" />

The final JMX adapter allows for the case where it is desirable to periodically poll an attribute exposed over JMX.
The attribute value then becomes the payload of the resulting message.

<jmx:attribute-polling-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=someService"
 attribute-name="requestCount">
 <si:poller max-messages-per-poll="1" fixed-rate="500"/>
 </jmx:attribute-polling-channel-adapter>

http://www.manning.com/fisher/

5

For source code, sample chapters, the Online Author Forum, and other resources, go to
http://www.manning.com/fisher/

Summary
We explored the ways you can take advantage of Java Management Extensions (JMX) within your message flows.
You learned how to monitor certain attributes of the message channels as well as the message endpoints within the
application context.

http://www.manning.com/fisher/

6

For source code, sample chapters, the Online Author Forum, and other resources, go to
http://www.manning.com/fisher/

Here are some other Manning titles you might be interested in:

Spring in Action, Third Edition
Craig Walls

Spring Batch in Action
Thierry Templier, Arnaud Cogoluegnes, Gary Gregory, and Olivier Bazoud

Spring in Practice
Willie Wheeler, John Wheeler, and Joshua White

Last updated: October 19, 2011

http://www.manning.com/fisher/
http://www.manning.com/walls4
http://www.manning.com/templier/
http://www.manning.com/wheeler/
http://www.manning.com/walls4�
http://www.manning.com/templier/�
http://www.manning.com/wheeler/�

