
1 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

 
 

 

Scala in Depth 
By Joshua D. Suereth 
 
Scala is a language that blends various techniques seen from other 
programming languages. This green paper from Scala in Depth explains how 
Scala attempts to leap between the worlds by offering its developers object-
oriented programming features, functional programming features, a very 
expressive syntax, statically enforced typing, and rich generics—all on top of 
the Java Virtual Machine. 
 
To save 35% on your next purchase use Promotional Code suerethgp35 when 
you check out at www.manning.com.  
 
You may also be interested in… 

Scala—a Blended Language 
 
Scala is a language that blends various techniques seen from other programming languages. Scala attempts to 
leap between worlds by offering its developers object-oriented programming features, functional programming 
features, a very expressive syntax, statically enforced typing, and rich generics—all on top of the Java Virtual 
Machine. Scala allows developers to focus on familiar features, but its true power comes from forming a balance 
amongst the sometimes competing ideas and features. The truly freeing power in Scala is the ability to dive into 
whatever paradigm is most useful for the task at hand. If an imperative design is best suited for the task, then 
there is nothing preventing the developer from writing imperative code. If a functional approach with immutability 
is desired, then the programmer is able to make it happen. Even more importantly, when the problem domain has 
different requirements, more than one approach can be used for various pieces of the solution.  

The philosophy of Scala  
To understand Scala, we need to understand the environment that produced Scala: The Java Ecosystem. The 
Java™ Language entered the Computer Science realm around 1995, making a huge splash. Java and the Virtual 
Machine that it runs on began to slowly revolutionize programming. At the time, C++ was coming into the 
spotlight. Developers were moving from purely C-style programs and learning how to effectively use object 
orientation. Despite all the benefits that C++ offered, it still suffered a few pain points, such as difficulties in 
distributing libraries and complexity in its object orientation. Java solved both these points through a limited form 
of object orientation and its use of a Virtual Machine. The Java Virtual Machine (JVM) allowed code to be written 
and compiled on a given platform, then distributed to other platforms with very little effort. Although cross 
platform problems did not disappear, the cost of cross platform programming was greatly reduced.  

Over time, the JVM got better and better at efficient execution while the Java Community grew and grew. The 
HotSpot™ optimizer was invented, which allowed code to be profiled before optimization occurred. While slower in 
startup, the eventual runtime performance became ideal for applications such as servers. Although not initially 
designed for it, the JVM began to prevail in enterprise server application environments. With this came attempts to 
make Enterprise Server development easy. Things like Enterprise Java Beans™ and more recently the Spring 
Application Framework™ emerged to help developers utilize the power of the JVM. The community around Java 
exploded and millions of easily consumed libraries were created. “If you can think of it, there’s probably a Java 
library for it” became a workplace slogan. The Java language continued to evolve slowly, trying to maintain its 
community.  

http://www.manning.com/suereth/
http://www.manning.com/suereth/
http://www.manning.com/suereth/
http://www.manning.com/


2 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

Meanwhile, a select few developers began stretching their wings and ran into the limitations of Java’s design. 
Java was meant to simplify things, and some members in the community needed increased complexity in a 
controlled fashion. The second wave of JVM languages occurred and it’s continuing to grow. Languages such as 
Groovy, JRuby, Clojure, and Scala herald a new era for the Java programmer. No longer are we limited to just one 
language, but we have a multitude of options, each with various advantages and disadvantages. One of the more 
popular languages is Scala.  

Scala was born from the mind of Martin Odersky, a man that had helped introduce generics into the Java 
programming language. Scala was an offshoot from the Funnel language, an attempt to combine functional 
programming and Petri nets. Scala was developed with the premise that you could mix together object orientation, 
functional programming, and a powerful type system—and still keep elegant succinct code. This blending of 
concepts was hoped to create something that real developers would find useful and that could be studied for new 
programming idioms. It was a large success; so much that the industry has started adopting Scala as a viable and 
competitive language. Understanding Scala requires understanding a mixture of concepts. Scala attempts to blend 
three dichotomies of thought into one language:  

 Functional programming and object oriented programming  

 Expressive syntax and static typing  

 Advanced language features and rich Java integration  

Let’s take a look at how these features blend starting with functional and object-oriented programming.  

Functional programming meets object orientation  
Functional programming and object orientation are two different approaches to software development. Functional 
programming is not a new concept and is not foreign to a modern developer’s toolbox. We’ll show this through 
examples from the Java Ecosystem, specifically the Spring Application framework and the Google Collections 
library. Each of these libraries has functional concepts blended with object orientation; however, each can be more 
elegant when translated into Scala. Before proceeding much further, it’s important to understand the terms object 
oriented programming and functional programming (see table 1).  

Object-oriented programming is a top-down approach to code design. Object-oriented programming approaches 
software by dividing code into nouns, or objects. Each object has some form of identity (self/this), behavior 
(methods), and state (members). After identifying nouns and defining their behaviors, interactions between nouns 
are defined. The problem with implementing interactions is that the interactions need to live inside an object. 
Modern object-oriented designs tend to have service classes, which are a collection of methods that operate across 
several domain objects. Service classes, although objects, usually do not have a notion of state or behavior 
independently of the objects they operate on.  

Functional programming approaches software as the combination and application of various functions. 
Functional programming tends to decompose software into behaviors or actions that need to be performed, usually 
in a bottom-up fashion. Functions are viewed in a mathematical sense, purely operations on their input. All 
variables are considered immutable. The immutability encouraged by functional programming aids concurrent 
programming. Functional programming works very well for composing behaviors but can be awkward when used 
with things that are expected to change, such as I/O.  

Table 1mAttributes commonly ascribed to object-orientated and functional programming 

Object-oriented programming Functional programming 

Composition of objects (nouns) Composition of functions (verbs) 

Encapsulated stateful interaction Stateless interaction 

Iterative algorithms Recursive algorithms 

Imperative flow Lazy evaluation 

http://www.manning.com/suereth/


3 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

N/A pattern Matching 
 
Functional programming and object orientation offer unique views of software. It’s these differences that make 

them very useful to each other. Object orientation can deal with the nouns and functional programming can deal 
with the verbs. In fact, many Java developers have started moving toward this strategy in recent years. The 
Enterprise Java Beans (EJB) specification splits software into session beans, which tend to contain behaviors, and 
entity beans, which tend to model the nouns in the system. Stateless Session Beans start looking more like 
collections of functional code (without being 100 percent immutable/pure).  

This push of functional-style libraries has come along much farther than the EJB specifications. The Spring 
Application Framework promotes a very functional style with its Template classes, and the Google Collections 
library is very functional in design. Let’s take a look at these common Java libraries and see how Scala’s blend of 
functional and object orientation can enhance these APIs.  

1.1.1 Discovering existing functional concepts  
Many modern API designs have been incorporating functional ideas without ascribing them to functional 
programming. For Java, things such as Google Collections or the Spring Application Framework make popular 
functional concepts accessible to the Java Developer. Scala takes this a bit further and embeds them into the 
language. Let’s do a simple translation of the methods on the popular Spring JdbcTemplate class and see what it 
starts to look like in Scala (listing 1).  

Listing 1 A query method on Spring’s JdbcTemplate class 
public interface JdbcTemplate { 
  List query(PreparedStatementCreator psc,  #A 
             RowMapper rowMapper) 
  ... 
} 

#A Query for List of objects 
 
Now for a simple translation into Scala, We’ll convert the interface into a trait having the same method (listing 

2).  

Listing 2 A simple Scala translation of the query method 
trait JdbcTemplate { 
  def query(psc : PreparedStatementCreator, rowMapper : RowMapper) : List[_]  
}  

 
The simple translation makes a lot of sense; however, it’s still designed with a distinct Java flair. Let’s start 

digging deeper into this design. Specifically, let’s look at the PreparedStatementCreator and the RowMapper 
interfaces (listing 3).  

Listing 3 PreparedStatementCreator interface 
public interface PreparedStatementCreator { 
  PreparedStatement createPreparedStatement(Connection con)   #A 
     throws SQLException; 
} 

#A The sole method defined 
The PreparedStatementCreator interface contains only one method. This method takes a JDBC Connection and 

returns a PreparedStatement. The RowMapper interface looks similar (listing 4).  

Listing 4 RowMapper interface 
public interface RowMapper { 
  Object mapRow(ResultSet rs, int rowNum)  #A 
        throws SQLException; 
} 

#A The sole method defined 

http://www.manning.com/suereth/


4 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

 
Scala provides first-class functions. This feature lets us change the JdbcTemplate query method so that it 

takes functions instead of interfaces. These functions should have the same signature as the sole method defined 
on the interface. In this case, PreparedStatementCollector argument can be replaced by a function that 
takes a Connection and returns a PreparedStatement. The RowMapper argument can be replaced by a function 
that takes a ResultSet and an integer and returns some type of object. The updated Scala version of the 
JdbcTemplate interface would look as in listing 5.  

Listing 5 Initial Scala version of Spring's JdbcTemplate class 
trait JdbcTemplate { 
  def query(psc : Connection => PreparedStatement, 
       rowMapper : (ResultSet, Int) => AnyRef  #A 
       ) : List[AnyRef] 
} 

#A Use first-class functions 
 
The query method is now more functional. It’s using a technique known as the loaner pattern. This technique 

involves some controlling entity (the JdbcTemplate) creating a resource and delegating the use of it to another 
function. In this case, there are two functions and three resources. Also, as the name implies, JdbcTemplate is 
part of a template method where pieces of the behavior were deferred to the user to implement. In pure object 
orientation, this is usually done via inheritance. In a more functional approach, these behavioral pieces become 
arguments to the controlling function. This provides more flexibility by allowing mixing/matching arguments 
without having to continually use subclasses.  

You may be wondering why we’re using AnyRef for the second argument’s return value. AnyRef is equivalent in 
Scala to java.lang.Object. Since Scala has supported generics, even when compiling for 1.4 JVMs, we should 
modify this interface further to remove the AnyRef and allow users to return specific types (listing 6).  

Listing 6 Typed version of Spring’s JdbcTemplate class 
trait JdbcTemplate { 
  def query[ResultItem](psc : Connection => PreparedStatement, 
       rowMapper : (ResultSet, Int) => ResultItem 
       ) : List[ResultItem]  #A  
} 

#A Typed return list 
 
With a few simple transformations, we’ve created a more functional interface.  
Although not as pure as most functional languages, we’re well on our way toward a functional looking API. Let’s 

continue looking for examples in the Java Ecosystem of functional design. In particular, let’s look at the Google 
Collections API.  

1.1.2 Examining functional concepts in Google Collections  
The Google Collections API adds a lot of power to the standard Java collections. Primarily, it brings a nice set of 
efficient immutable data structures and some functional ways of interacting with your collections, primarily the 
Function interface and the Predicate interface. These interfaces are used primarily from the Iterables and 
Iterators classes. Let’s take a look at the Predicate interface and its uses (listing 7).  

 

Listing 7 Google Collections Predicate interface 
interface Predicate<T> { 
   public boolean apply(T input);  #A 
   public boolean equals(Object other); 
} 

#A matches Function1.apply 
 

http://www.manning.com/suereth/


5 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

The Predicate interface is rather simple. Besides equality, it contains an apply method, which returns true 
or false against its argument. This is used in Iterators/Iterables filter method. The filter method takes 
a collection and a predicate. It returns a new collection containing only elements that pass the predicate apply 
method. Predicates are also used in the find method. The find method looks in a collection for the first element 
passing a Predicate and returns it. The filter and find method signatures are shown in listing 8.  

Listing 8 Iterables filter and find methods 
class Iterables { 
   public static <T> Iterable<T> filter(Iterable<T> unfiltered, 
       Predicate<? super T> predicate) {...}  #A 
   public static <T> T find(Iterable<T> iterable, 
       Predicate<? super T> predicate) {...}  #B 
   ... 
} 

#A Filters using predicate 
#B Find using predicate 

 
There is also a Predicates class that contains static methods for the combining predicates (ands/ors) as well 

as the standard predicates for uses such as not null. This simple interface creates some powerful functionality 
through the potential combinations that can be achieved with very terse code. Also, since the predicate itself is 
passed into the filter function, the function can determine the best way or time to execute the filter. The data 
structure may be amenable to lazily evaluating the predicate, thus making the iterable return a view of the original 
collection. It might also determine that it could best optimize the creation of the new iterable through some form of 
parallelism. The fact is that this has been abstracted away, so the library could improve over time with no code 
changes on our part.  

The Predicate interface itself is rather interesting because it looks like a very simple function. This function 
takes some type T and returns a boolean. In Scala this would be represented with T => Boolean. Let’s rewrite 
the filter/find methods in Scala and see what their signatures would look like.  

Listing 9 Iterables filter and find methods in Scala 

object Iterables { 
   def filter[T](unfiltered : Iterable[T], 
       predicate : T => Boolean) : Iterable[T] = {...}  #A 
   def find[T, U :> T](iterable : Iterable[T], predicate : U => Boolean) : T = {...} 
   ... 
} 

#A No need for ? 
 
You’ll immediately notice that, in Scala, we aren’t using any explicit ? super T type annotations. This is 

because the Function interface in Scala is appropriately annotated with covariance and contravariance. Covariance 
(+T or ? extends T) is when a type can be coerced down the inheritance hierarchy. Contravariance (-T or ? 
super T) is when a type can be coerced up the inheritance hierarchy. Invariance is when a type cannot be 
coerced at all. In this case, a Predicate’s argument can be coerced up the inheritance hierarchy as needed. This 
means, for example, that a predicate against mammals could apply to a collections of cats, assuming a cat is a 
subclass of mammal. In Scala, you specify co/contra/in-variance at class definition time.  

What about combining predicates in Scala? We can accomplish a few of these rather quickly using some 
functional composition. Let’s make a new Predicates module in Scala that takes in function predicates and provides 
commonly used function predicates (listing 10). The input type of these combination functions should be T => 
Boolean and the output should also be T => Boolean. The predefined predicates should also have a type T => 
Boolean.  

Listing 10 Predicates in Scala  
object Predicates { 
  def or[T](f1 : T => Boolean, f2 : T => Boolean) = 
         (t : T) => f1(t) || f2(t)  #A 

http://www.manning.com/suereth/


6 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

  def and[T](f1 : T => Boolean, f2 : T => Boolean) = 
         (t : T) => f1(t) && f2(t) 
  val notNull[T] : T => Boolean = _ != null  #B 
} 

#A Explicit anonymous function  
#B Placeholder } function syntax  

 
We’ve now started to delve into the realm of functional programming. We are defining first-class functions and 

combining them to perform new behaviors. You’ll notice the or method takes two predicates, f1 and f2. It then 
creates a new anonymous function that takes an argument t and ors the results of f1 and f2. This is the 
essence of functional programming. Playing with functions also makes more extensive use of generics and the type 
system. Scala has put forth a lot of effort to reduce the overhead for generics in daily usage. Let’s look into how 
Scala’s type system allows expressive code.  

Static typing and expressiveness  
There is a common misconception among developers that static typing leads to verbose code. This myth exists 
because many languages had derived from C, where types must be explicitly specified in many different places. 
Since the software and the compiling techniques have improved, this is no longer true. Scala uses some of these 
advances to reduce boilerplate in code and keep things concise.  

Scala made a few simple design decisions which help made it very expressive, these being:  

 Changing sides of type annotation.  

 Type inference. 

 Scalable syntax. 

 User-defined implicits.  

Let’s take a look at how Scala changes the sides of type annotations.  

1.1.3 Changing sides  
Scala places type annotations on the right-hand side of variables. In some statically typed languages, like Java or 
C++, it is common to have to express the types of variables, return values, and arguments. When specifying 
variables or parameters, the convention—drawn from C—is to place type indicators on the left-hand side of the 
variable name. For method arguments and return values, this is acceptable but causes some confusion when 
creating different styles of variables. C++ is the best example of this because it has a rich set of variable styles, 
such as volatile, const, pointers, and references (listing 11).  

Listing 11 Examples of integer variables in C++ 
int x  #A 
const int x  #B 
int & x  #C 
const int & const x  #D 

#A Mutable integer variable 
#B Immutable integer variable 
#C Reference to integer value 
#D Immutable reference to immutable integer value 

 
This mingling of the style of variable with the type annotation leads to some rather complex definitions. Scala, 

like a few other languages, places its type annotations on the right of variables (listing 12). This separates the style 
of variable from the type annotation, helping to reduce some complexity when reading values.  

Listing 12 Examples of variable styles in Scala 
var x : Int  #A 
val x : Int  #B 
lazy val x : Int  #C 

#A Mutable integer variable 
#B Immutable integer variable 

http://www.manning.com/suereth/


7 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

#C Immutable integer variable with deferred execution 
 
This demonstrates the simplicity achieved merely by migrating type annotations to the right of the variable 

names; however, things still aren’t as simple as they could be. Scala further reduces syntactic clutter by 
attempting to infer the missing type annotations.  

1.1.4 Type inference  
Scala helps to further reduce syntactic noise by performing type inference wherever possible. Type inference is 
when the compiler determines what the type annotation should be rather than forcing the user to specify one. The 
user can always provide a type annotation but has the option to let the compiler do the work (see listing 13).  

Listing 13 Type inference in Scala 
val x : Int = 5  #A 
val y = 5  #B 

#A User specified type 
#B Inferred type 

 
This feature can drastically reduce the clutter found in some other typed languages. Scala takes this even 

further to do some level of inference on arguments passed into methods, specifically with first-class functions. If a 
method is known to take a function argument, the compiler can infer the types used in a function literal (listing 
14).  

Listing 14 Functional literal type inference 
def myMethod(functionLiteral : A => B) : Unit 
myMethod({ arg : A => new B })  #A 
myMethod({ arg => new B })  #B 

#A Explicit type 
#B Type inferred 

1.1.5 Dropping the syntax  
Scala syntax takes the general approach that, when the meaning of a line of code is straightforward, the verbose 
syntax can be dropped. This feature can confuse users first walking into Scala but can be rather powerful when 
used wisely. Let’s show a simple refactoring from the full glory of Scala syntax into the simplistic code that is seen 
in idiomatic usage. Listing 15 shows the function for quicksort in Scala.  

Listing 15 Verbose Scala quicksort 
def qsort[T <% Ordered[T]](list:List[T]):List[T] = {   #A 
  list.match({ 
    case Nil => Nil; 
    case x::xs => 
       val (before,after) = xs.partition({ i => i.<(x) }); 
       qsort(before).++(qsort(after).::(x)));   #B 
  }); 
} 

#A <% means 'view' 
#B ++ and :: mean aggregate 

 
This code accepts a list whose type, T, is able to be implicitly converted into a variable of type Ordered[T] (in 

other words T <% Ordered[T]). We’re requiring that the list contain elements for which we have some notion of 
ordering, specifically a less than function (<). We then examine the list. If is empty or Nil, then we return a Nil list. 
If it encounters a list, we extract the head (x) and the tail (xs) of the list. We use the head element of the list to 
partition the tail into two lists. We then recursively call the quicksort method on each partition. In the same line, 
we combine the sorted partitions and the head element into a complete list.  

You may be thinking, “Wow, Scala looks ugly.” In this case, you would be right. The code is rather cluttered and 
difficult to read. There’s quite a bit of syntactic noise preventing the meaning of the code from being clear. Not only 
that, but there’s an awful lot of type information after qsort. Let’s pull out our surgical knife and start cutting out 

http://www.manning.com/suereth/


8 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

cruft. First, let’s start with Scala’s semicolon inference. The compiler will assume that the end of a line is the end of 
an expression, unless you leave some piece of syntax hanging, like the . before a method call.  

Removing semicolons isn’t quite enough to reduce the clutter, however. We should also use operator notation. 
Operator notation is the name Scala gives to its ability to treat methods as operators. A method of no arguments 
can be treated as a postfix operator. A method of one argument can be treated as an infix operator. There also are 
special rules for certain characters; for example, : at the end of a method name reverses the order of a method 
call. These rules are demonstrated in listing 16.  

Listing 16 Operator notation 
x.foo(); /*is the same as*/ x foo  #A 
x.foo(y); /*is the same as*/ x foo y  #B 
x.::(y); /*is the same as*/ y :: x  #C 

#A Postfix notation 
#B Infix notation 
#C Inverted infix notation 

 
Scala also provides placeholder notation when defining anonymous functions (lambdas). This syntax uses the _ 

keyword as a placeholder for a function argument. If more than one placeholder is used, each consecutive 
placeholder refers to consecutive arguments to the function literal. This notation is usually reserved for very simple 
functions, such as the less-than comparison in our quicksort.  

We can pair this notation with an operator notation to achieve the result shown in listing 17 on our quicksort 
algorithm. 

Listing 17 Less verbose Scala quicksort 
def qsort[T <% Ordered[T]](list:List[T]):List[T] = list match { 
case Nil => Nil 
case x :: xs => 
val (before, after) = xs partition ( _ < x )  #A 
qsort(before) ++ (x :: qsort(after)); 
} 

#A Placeholder notation used instead of => 
 
Scala not only offers syntactic shortcuts for simple cases, it also provides a mechanism to bend the type system 

via implicits conversions and implicit arguments.  

1.1.6 Implicits are an old concept  
Scala implicits are a new take on an old concept. The first time I was ever introduced to the concept of implicit 
conversions was with primitive types in C++. C++ allows primitive types to be automatically converted as long as 
there is no loss of precision. As an example, I can use an int literal when declaring a long value. The actual types 
double, float, int, and long are different to the compiler. It does try to be intelligent and Do the Right Thing™ 
when mixing these values. Scala provides this same mechanism, but using a language feature that is available for 
anyone.  

The scala.Predef object is automatically imported into scope by Scala. This places its members available to 
all programs. It’s a handy mechanism for providing convenience functions to users, like directly writing println 
instead of Console.println or System.out.println. Predef also provides what it calls primitive widenings. 
These are a set of implicit conversions that automatically migrate from lower-precision types to higher precision 
types. Let’s take a look at the set of methods defined for the Byte type (listing 18).  

Listing 18 Byte conversions in scala.Predef Object 
implicit def byte2short(x: Byte): Short = x.toShort 
implicit def byte2int(x: Byte): Int = x.toInt 
implicit def byte2long(x: Byte): Long = x.toLong 
implicit def byte2float(x: Byte): Float = x.toFloat 
implicit def byte2double(x: Byte): Double = x.toDouble 
 

http://www.manning.com/suereth/


9 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

These methods are simply calls to the runtime-conversion methods. The implicit before the method means 
the compiler may attempt to apply this method to a type Byte, if it is required for correct compilation. This means, 
if we attempt to pass a Byte to a method requiring a Short, it will use the implicit conversion defined as 
byte2short. Scala also takes this one step further and looks for methods via implicit conversions if the current 
type does not have the called method. This comes in handy for more than just primitive conversions.  

Scala also uses the implicit conversion mechanism as a means of extending Java’s base classes (Integer, 
String, Double, and so on). This allows Scala to make direct use of Java classes for ease of integration and 
provide richer methods that make use of Scala’s more advanced features. Implicits are a very powerful feature and 
are mistrusted by some. The key to implicits in Scala are knowing how and when to use them.  

1.1.7 Using Scala’s implicit keyword  
Utilizing implicits is key to manipulating Scala’s type system. They are primarily used to automatically convert from 
one type to another as needed, but can also be used for limited forms of compiler time metaprogramming. 
Implicits must be associated with a lexical scope to be used. This can be done either via companion objects or 
explicitly importing them.  

The implicit keyword is used in two different ways in Scala. First, it’s used to identify and create arguments that 
are automatically passed when found in the scope. This can be used to lexically scope certain features of an API. As 
implicits also have a lookup policy—the inheritance linearizion—they can be used to change the return type of 
methods. This allows some very advanced APIs and type-system tricker such as that used in the Scala collections 
API.  

The implicit keyword can also be used to convert from one type to another. This occurs in two places, the first 
when passing a parameter to a function. If Scala detects that a different type is needed, after checking the type 
hierarchy, it will look for an implicit conversion to apply to the parameter. An implicit conversion is a simple 
method, marked implicit, that takes one argument and returns something. The second place where Scala will 
perform an implicit conversion is when a method is called against a particular type. If the compiler cannot find the 
desired method, it will apply implicit conversations against the variable until it either finds one that contains the 
method or it runs out of conversions.  

These features combine to Scala a very expressive syntax despite its advanced type system. Creating 
expressive libraries requires a deep understanding of the type system as well as thorough knowledge of implicit 
conversions. The type system also interoperates very well with Java, which is a critical design for Scala.  

Transparently working with the JVM  
One of Scala’s draws is its seamless integration with Java and the JVM. Scala provides a rich compatibility with 
Java, such that Java classes can be mapped directly to Scala classes. The tightness of this interaction makes 
migrating from Java to Scala rather simple; however, caution needs to be used with some of Scala’s advanced 
feature set. Scala has some rather advanced features not available in Java, and care was taken in the design so 
that seamless Java interaction can be achieved. For the most part, libraries written in Java can be imported into 
Scala as is.  

1.1.8 Java in Scala  
Using Java libraries from Scala is seamless because Java idioms map directly into Scala idioms. Java classes 
become Scala classes, Java interfaces become abstract Scala traits. Java static members get added to a pseudo 
Scala object. This combined with Scala’s package import mechanism and method access make Java libraries feel 
like natural Scala libraries, albeit with more simplistic designs. In general, this kind of interaction “just works”. For 
example, let’s take a Java class that has a constructor, a method and a static helper method (listing 19).  

Listing 19 Simple Java Object 
class SimpleJavaClass { 
  private String name; 
  public SimpleJavaClass(String name) {  #A 
    this.name = name; 
  } 
  public String getName() {   #B 

http://www.manning.com/suereth/


10 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

    return name; 
  } 
  public static SimpleJavaClass create(String name) {   #C 
    return new SimpleJavaClass(name); 
  } 
} 

#A Constructor 
#B Class method 
#C Static class helper  

 
Now, let’s use this in Scala (listing 20).  

Listing 20 Simple Java Object used in Scala 
val x = SimpleJavaClass.create("Test") #A 
x.getName()  #B 
val y = new SimpleJavaClass("Test")  #C 
#A Calling Java static methods 
#B Calling Java methods 
#C Using Java constructor 

 
This mapping is rather natural and makes using Java libraries a seamless part of using Scala. Even with the 

tight integration, Java libraries usually have some form of thin Scala wrapper that provides some of the more 
advanced features a Java API could not provide. These features are very apparent when trying to make use of 
Scala libraries inside Java.  

1.1.9 Scala in Java  
Scala attempts to map its features to Java in the simplest possible fashion. For the most part, simple Scala 
features map almost one to one with Java features—for example, classes, abstract classes, methods. Scala has 
some rather advanced features that do not map easily into Java. These include things like objects, first-class 
functions, and implicits.  

SCALA OBJECTS IN JAVA  
Although Java statics map to Scala objects, Scala objects are really instances of a singleton class. This class name 
is compiled as the name of the object with a $ appended to the end. There is a MODULE$ static field on this class, 
which is designed to be the sole instance. All methods/fields can be accessed via this MODULE$ instance. Scala also 
provides forwarding static methods when it can. These static methods exist on the companion class (a class with 
the same name as the object). Although the static methods are unused in Scala, they provide a convenient syntax 
when called from Java (see listings 21 and 22).  

Listing 21 Simple Scala object 
object ScalaUtils { 
  def log(msg : String) : Unit = Console.println(msg)  #A 
 
  val MAX_LOG_SIZE = 1056  #B 
} 

#A Simple Scala method 
#B Simple Scala field 

Listing 22 Using simple Scala object in Java 
ScalaUtils.log("Hello!");  #A 
ScalaUtils$.MODULE$.log("Hello!");  #B 
System.out.println(ScalaUtils$.MODULE$.MAX_LOG_SIZE());  #C 
System.out.println(ScalaUtils.MAX_LOG_SIZE());  #D 

#A Acts like static call 
#B Use the singleton instance 
#C Variables become *methods*  
#D Static forwarder 

 

http://www.manning.com/suereth/


11 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

SCALA FUNCTIONS IN JAVA  
Scala promotes the use of function as object, or first-class functions. As of Java 1.6, there is no such concept in the 
Java language (or the JVM itself). Therefore, Scala creates the notion of Function traits. These are a set of 23 traits 
that represent functions of arities 0 through 23. When the compiler encounters the need for passing a method as a 
function object, it creates an anonymous subclass of an appropriate function trait. As traits do not map into Java, 
the passing of first-class functions from Java into Scala is also inhibited but not impossible (see listing 22).  

Listing 22 Using simple Scala object in Java 
ScalaUtils.log("Hello!");  #A 
ScalaUtils$.MODULE$.log("Hello!");  #B 
System.out.println(ScalaUtils$.MODULE$.MAX_LOG_SIZE());  #C 
System.out.println(ScalaUtils.MAX_LOG_SIZE()); #D 

#A Acts like static call 
#B Use the singleton instance 
#C Variables become *methods* 
#D Static forwarder 

We’ve created an abstract class in Scala that Java can implement more easily then a function trait. Although 
this eases the implementation in Java, it doesn’t make things 100 percent simple. There’s still a mismatch between 
Java’s type system and Scala’s encoding of types that requires us to coerce the type of the function when making 
the Scala call.  

Listing 24 Implementing a first-class function in Java 
class JavaFunction { 
  public static void main(String[] args) { 
 System.out.println(FunctionUtil.testFunction( 
           (scala.Function1<Integer,Integer>)  #A 
              new AbstractFunctionIntIntForJava() {  #B 
      public Integer apply(Integer argument) {  #C 
        return argument + 5; 
      } 
    })); 
  } 
} 

#A Coerce the types 
#B First-class function 
#C Function logic 

So, it is possible to use first-class functions, and with it a more functional approach when combining Scala and 
Java. However, other alternatives exist to make this work. As you can see, Scala can integrate quite well with 
existing Java programs and be used side by side with existing Java code. Java/Scala interaction isn’t the only 
benefit of having Scala run inside the JVM; the JVM itself provides a huge benefit.  

1.1.10 The benefits of a JVM  
As alluded to earlier, the JVM provides many of the benefits associated with Java. Through bytecode, libraries 
become distributable to many differing platforms on an as-is basis. The JVM has also been well tested in many 
environments and is used for large-scale enterprise deployments. Not only is it well tested, there has been a big 
focus on performance of the Java platform. The HotSpot compiler can perform various optimizations on code at 
runtime. This also enables users to upgrade their JVM and immediately see performance improvements, without 
patches or recompiling.  

HOTSPOT-ING  
The primary benefit of Scala running on the JVM is the HotSpot runtime optimizer. This allows runtime profiling of 
programs, with automatic optimizations applied against the JVM bytecode. Scala acquires these optimizations for 
free by nature of running against the JVM. Every release of the JVM improves the HotSpot compiler, and this 
improves the performance of Scala. The HotSpot compiler does this through various techniques, including:  

 Method inlining.  

 On-Stack Replacement (OSR).  

http://www.manning.com/suereth/


12 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

 Escape analysis.  

 Dynamic deoptimization.  

Method inlining is HotSpot’s ability to determine when it can inline a small method directly at a call spot. This 
was a favorite technique of mine in C++. HotSpot will dynamically determine when this is optimal. On-Stack 
Replacement refers to HotSpot’s ability to determine that a variable could be allocated on the Stack vs. The Heap. I 
remember in C++ the big question when declaring a variable was whether to place it on the stack or the heap. 
Now HotSpot can answer that for me. Escape analysis is performed by HotSpot to determine if various things 
escape a certain scope. This is primarily used to reduce locking overhead when synchronized method calls are 
limited to some scope; however, it can be applied to other situations. Dynamic deoptimization is the key feature of 
HotSpot. It is the ability to determine if an optimization did not, in fact, improve performance and undo that 
optimization, allowing others to be applied. These features combine into a pretty compelling picture of why new/old 
languages (for example, Ruby) desire to run on the JVM.  

Summary  
You’ve learned a little bit about the philosophy of Scala. Scala was designed with the idea of blending together 
various concepts from other languages. Scala blends together functional and object-oriented programming, 
although clearly this has been done in Java as well. Scala made choices about syntax that drastically reduced the 
verbosity of the language and enabled some powerful features to be elegantly expressed, such as type inference. 
Finally Scala has very tight integration with Java and runs on top of the Java Virtual Machine, which is perhaps the 
single most important aspect that makes Scala relevant. It can be utilized in our day-to-day jobs with little cost.  
As Scala blends together various concepts, users of Scala will find themselves striking a delicate balance between 
functional programming techniques, object orientation, integration with existing Java applications, Expressive 
library APIs, and enforcing requirements through the type system. Often, the best course of action is determined 
by the requirements at hand. It is the intersection of competing ideas where Scala thrives and also where the 
greatest care must be taken. 

http://www.manning.com/suereth/


13 
 

 
For source code, sample chapters, the Online Author Forum, and other resources, go to 

http://www.manning.com/suereth/ 
 

Here are some other Manning titles you might be interested in: 
 

 

Lift in Action 
Timothy Perrett 

 

Scala in Action 
Nilanjan Raychaudhuri 

 

DSLs in Action 
Debasish Ghosh 

 

Last updated: October 11, 2011 

http://www.manning.com/suereth/
http://www.manning.com/perrett/
http://www.manning.com/raychaudhuri/
http://www.manning.com/ghosh
http://www.manning.com/perrett/�

