
Understanding Data with Graphs

Philipp K. Janert

Excerpted from:

Gnuplot in Action
Understanding Data with Graphs

by Philipp K. Janert

Softbound print: January 2009 (est.), 275 pages
Manning Publications
ISBN: 1-933988-39-8

This green paper is excerpted from the forthcoming book Gnuplot in Action by Philipp

K. Janert and published by Manning Publications.

The book provides the first comprehensive introduction to gnuplot — from the basics

to the power features and beyond. Particular attention is paid to those areas that have

proven to be difficult to grasp, or are poorly explained in the existing documentation.

This book looks at different types of graphs that can be generated with gnuplot and

discusses when and how to use them to extract relevant information from data.

This paper demonstrates some of gnuplot’s capabilities and the kinds of problems gnu-

plot is suitable for. For the table of contents, the Author Forum, and other resources,

go to www.manning.com/janert.

Gnuplot is probably the most widely used open-source program to plot and
visualize data. In this book, I want to show you how to use gnuplot to make plots
and graphs of your data: both quick and easy graphs for your own use, and highly
polished graphs for presentations and publications.

But I also want to show you something else: how to solve data analysis prob-
lems using graphical methods. The art of discovering relationships in data and
extracting information from it by visual means is called “graphical analysis” and I
believe gnuplot to be an excellent tool with which to do it.

As a teaser, let’s take a look at some problems and how we might be able to
approach them using graphical methods. The graphs in this paper have been, of
course, generated with gnuplot.

1 A Busy Weekend

To get a feeling for the kinds of problems that we may be dealing with, and for the
kinds of solutions that gnuplot can help us find, let’s look at two examples. Both
take place during a long and busy weekend.

2 1 A BUSY WEEKEND

1.1 Planning a Marathon

Imagine you are in charge of organizing the local city marathon. There will be over
2000 starters, traffic closed around the city, plenty of spectators — and a major Fin-
ish Line Festival to celebrate the victors and help the wounded. The big question is:
When should the Finish Line crew be ready to deal with the majority of runners?
At what point do we expect the big influx of the masses?

You have available to you the results from last year’s event. Assuming that
the starters have not improved dramatically over the last year (probably a safe
assumption!), you do a quick average on the completion times and find that last
year’s average was 172 minutes. To be on the safe side, you calculate the standard
deviation as well, which comes out to about 15 minutes. So you tell your crew to
be ready for the big rush starting two and a half hours (150 minutes) after the start,
and feel reasonably well prepared for the event.

So it comes as a bit of a surprise when on the big day plenty of runners start
showing up on the finish line after only 130 minutes — a good twenty minutes
earlier than the expected onset of the rush. In terms of event management, 20 or
30 minutes are not catastrophic, yet it is a bit strange. The next day you wonder:
What went wrong?

Let’s take a look at the data to see what we can learn about it. So far, all we
know of it is the mean and the standard deviation.

The mean is convenient: It is easy to calculate and it summarizes the entire
data set in a single number. But in forming the mean, we lost a lot of information.
To understand the whole data set, we will have to look at it. And since we can’t
understand data by looking at more than 2000 individual finish times, this means
we will have to plot it.

It will be convenient to group the runners by completion time and to count the
number of participants that completed during each full minute. The resulting file
might start like this:

Minutes Runners

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

...

Now we plot the number of runners against the completion (cf. figure 1).

It is immediately obvious where we went wrong: the data is bi-modal, meaning
it has two peaks. There is an early peak at around 150 minutes, and a later main
peak at 180 minutes.

Actually, this makes good sense: A major sporting event such as a city marathon
attracts two very different groups of people: “athletes”, who train and compete

Copyright Manning Publications, 2008

1 A BUSY WEEKEND 3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 120 140 160 180 200 220 240

Figure 1: Number of finishers vs. time to complete (in minutes).

throughout the year and are in it to win, and a much larger group of “amateurs”,
who come out once a year for a big event and are mostly there to participate.

The problem is that for such data the mean and standard deviation are obvi-
ously bad representations — so much so that at the time when we expected the big
rush (170 minutes), there is actually a bit of a lull at the finish line!

The take-home message here is that it is usually not a good idea to rely on
summary statistics (such as the mean) for unknown data sets. We always should
investigate what the data looks like. Once we have confirmed the basic shape, we
can choose how to summarize our findings best.

And of course, there is always more to learn. In this example, for instance, we
see that after about 200 minutes almost everybody has made it, and we can start
winding down the operation. The actual “tail” of the distribution is quite small
— actually a bit surprisingly so (I would have expected to see a greater number
of real “stragglers”, but possibly many runners that are really slow drop out of the
race when they realize they will place badly).

1.1.1 Using Gnuplot

Let’s take a look at the gnuplot command that was used to generate figure 1. Gnu-
plot is command-line oriented: after you start gnuplot, it drops you into an inter-
active command session, and all commands are typed at the interactive gnuplot
prompt.

Gnuplot reads data from simple text files, with the data arranged in columns as
shown above. To plot a data file takes only a single command: plot, like this:

Copyright Manning Publications, 2008

4 1 A BUSY WEEKEND

Figure 2: A DLA cluster of N=30,000 particles, drawn with gnuplot.

plot "marathon" using 1:2 with boxes

The plot command requires the name of the data file as argument in quotes.
The rest of the command line specifies which columns to use for the plot, and in
which way to represent the data. The using 1:2 declaration tells gnuplot to use the
first and second column in the file called marathon. The final part of the command:
with boxes, selects a box style, which is often suitable to display counts of events,
as in this case.

Gnuplot handles most everything else by itself: it sizes the graph and selects
the most interesting plot range, it draws the border, and it draws the tic marks and
their labels. All these details can be customized, but gnuplot typically does a good
job at anticipating what the user wants.

1.2 Determining the Future

The same weekend that 2000 runners are running through the city, a diligent grad-
uate student is working on his research topic. He studies Diffusion Limited Aggre-
gation (DLA), a process wherein a particle performs a random walk, until it comes
in contact with a growing “cluster” of particles. At the moment of contact, the par-
ticle sticks to the cluster at the location where the contact occurred and becomes
part of the cluster. Now, a new random walker is released to perform random
walk, until it sticks to the cluster. And so on.

Clusters grown through this process have a remarkably open, tenuous structure
(cf. figure 2). DLA clusters are fractals, but rather little is known about them with

Copyright Manning Publications, 2008

1 A BUSY WEEKEND 5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5000 10000 15000 20000 25000 30000

R
un

 T
im

e
[s

ec
]

Cluster Size

Figure 3: Time required to grow a DLA cluster.

certainty.1

The DLA process is very simple, so it seems straightforward to write a com-
puter program to grow such clusters in a computer, and this is what our busy grad-
uate student has done. Initially, all seems well, but as the simulation progresses,
the cluster seems to grow more and more slowly. Excruciatingly slowly, in fact.
The goal was to grow a DLA cluster of N=100,000 particles — will the program
ever finish?

Luckily, the simulation program periodically writes information about its progress
to a log file: for each new particle added to the cluster, the time (in seconds) since
the start of the simulation is recorded. We should be able to predict the completion
time from this data, but an initial plot (figure 3) is just not very helpful: there are
just too many ways that this curve can be extrapolated to larger cluster sizes.

However, the time consumed by many computer algorithms grows as a simple
power of the size of the problem. In our case, this would be the number N of par-
ticles in the cluster: T ∼ Nk, for some value of k. Our research student therefore
plots the running time of his simulation program on a double logarithmic plot ver-
sus the cluster size — and, lo, the data falls on a straight line, indicating power law
behavior. (I will explain later how and why this works.) Through a little trial and
error, he also finds an equation that approximates the data quite well. The equa-

1The original paper on DLA was “Diffusion Limited Aggregation, A Kinetic Critical Phe-
nomenon” by T. A. Witten and L. M. Sander and appeared in Physical Review Letters Vol. 41, p.
1400 in 1981. It is one of the most quoted papers in that journal of all time. If you want to learn more
about DLA and similar process, you can check out Fractals, Scaling, and Growth Far From Equilibrium
by Paul Meakin (1998).

Copyright Manning Publications, 2008

6 1 A BUSY WEEKEND

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000

R
un

 T
im

e
[s

ec
]

Cluster Size

data
model

Figure 4: Time required to grow a DLA cluster in a double-logarithmic plot, to-
gether with an approximate mathematical model.

tion can be extended to any cluster size desired and will give the time required.
For N=100,000 (which was the original goal), we can read off T=300,000 seconds
(or more), corresponding to 83 hours or four days, so we can tell our friend that
there is no point in spending the weekend in the lab — he should go out (maybe
run a Marathon), and come back on Monday. Or perhaps work on a better algo-
rithm. (For simulations of DLA cluster growth, dramatic speedups over the naive
implementation are possible. Try it if you like.)

1.2.1 Using Gnuplot

Again, let’s see how the graphs in this section were created. The easiest to under-
stand is figure 3. Given a file containing two columns, one giving the cluster size
and the other giving the completion time, the command is simply:

plot "data" using 1:2 with lines

The only difference compared to figure 1 is the style: rather than boxes, I use
line segments to connect consecutive data points, hence: with lines.

Did you notice that figure 3 and figure 4 contain more than just data? Both axes
are now labeled! Details such as labels and other helpful decorations often make
the difference between a mediocre and a high-quality graph, because they provide
the observer with the necessary context to fully understand the graph.

In gnuplot, all details of a graph’s appearance are handled by setting the appro-
priate options. To place the labels on the x- and y-axes in figure 3, I used:

Copyright Manning Publications, 2008

2 WHAT IS GRAPHICAL ANALYSIS? 7

set xlabel "Cluster Size"

set ylabel "Run Time [sec]"

Figure 4 is drawn using double-logarithmic axes. This is yet another option,
which is set as follows:

set logscale

Figure 4 shows two curves: the data together with a best “fit”. Plotting several
data sets or mathematical functions together in one plot is very simple: we just list
them one after another on the command line for the plot command:

plot "runtime" using 2:6 title "data" with lines, ←֓

→ 1.2*(x/1000)**2.7 title "model"

This command introduces a further gnuplot feature: the title directive. It
takes a string as argument, which will be displayed together with a line sample in
the plot’s key or legend (visible in the upper left of figure 4).

Finally, we come to figure 2. That’s a somewhat different beast. You will notice
that the border and the tic marks are missing. The aspect ratio (the ratio of the
graph’s width to its height) has been constrained to 1, and a single dot has been
placed at the position of each particle in the cluster. Here are the the most important
commands that I used:

unset border

unset xtics

unset ytics

set size square

plot "cluster" using 1:2 with dots

You see that gnuplot is really very simple to use. In the next section, I’d like to
talk more about using graphical methods to understand a data set, before coming
back to gnuplot and discussing why it is my favorite tool for this kind of activity.

2 What is Graphical Analysis?

These two examples should have given you an idea what Graphical Analysis is
and how it works. The basic steps are always the same:

1. Plot the data.

2. Inspect it, trying to find some recognizable behavior.

3. Compare the actual data to data that represents the hypothesis from the pre-
vious step (e.g. in the second example above, we plotted running time of the
simulation program together with a power-law function).

Copyright Manning Publications, 2008

8 2 WHAT IS GRAPHICAL ANALYSIS?

4. Repeat.

We may try more sophisticated things, but this is the basic idea. If the hypoth-
esis in step two seems reasonably well justified, we will often try and remove its
effect, for instance by subtracting a formula from the data, to see whether there is
any recognizable pattern in the residual. And so on.

Iteration is a crucial aspect of graphical analysis: plotting the data this way
and that way, comparing it to mathematical functions or to other data sets, zoom-
ing in on interesting regions or zooming out to detect the overall trend, applying
logarithms or other data transformations to change its shape, using a smoothing al-
gorithm to tame a noisy data set. . . During an intense analysis session using a new
but promising data set, it is not uncommon to produce literally dozens of graphs.

None of these graphs will be around for long. That’s because they are transient,
persisting just long enough for us to form a new hypothesis, which we’ll try to
justify in the next graph we may draw. This also means that these graphs will not
be “polished” in any way, since they are the graphical equivalent to scratch paper:
notes of work in progress, not intended for anyone but oneself.

This isn’t to say that polishing doesn’t have it’s place. But it comes later in the
process: once we know what the results of our analysis are, we need to communi-
cate them to others. At this point, we will create “permanent” graphs, which will
be around for a long time — maybe until the next departmental presentation, or (if
the graph will be part of a scientific publication, for instance), forever!

Such permanent graphs have different requirements: other people must be able
to understand them, possibly years later, and most likely without us there to ex-
plain them. Therefore, graph elements like labels, captions, and other contextual
information become very important. Presentation graphs must be able to stand by
themselves.

Presentation graphs also should make their point most clearly. Now that we
know what the results of our analysis are, we should find the clearest and most
easily understood way of presenting our findings. A presentation graph should
make one point and make it well.

Finally, some would argue that a presentation graph should “look good”. Maybe.
If it makes its point well, there is no reason why it shouldn’t be visually pleasing as
well. But that is an afterthought. Even a presentation graph is about the content,
not the packaging!

2.1 Data Analysis and Visualization Concepts

Data analysis and visualization is a broad field. Besides different graphical ap-
proaches, there are of course also other methods, which may do entirely without
visual help. I think it will be useful to introduce and distinguish a number of terms
and concepts for different activities in data analysis. At times the boundaries be-
tween these different concepts may be a little fuzzy, but I think the overall distinc-
tions are quite clear.

Graphical Analysis Graphical analysis is an investigation of data using graphical
methods. The purpose is the discovery of new information about the under-

Copyright Manning Publications, 2008

2 WHAT IS GRAPHICAL ANALYSIS? 9

lying data set. In graphical analysis, the “proper” question to ask is often not
known from the outset, but is discovered as part of the analysis process.

Presentation Graphics In contrast to graphical analysis, presentation graphics is
concerned with the communication of information and results that are al-
ready understood: the discovery has been made, now it merely needs to be
communicated clearly!

Control Charts I use the term “control chart” somewhat loosely for situations where
we already know the questions to ask of the data (as in the case of presenta-
tion graphics), but where the primary audience for the graph is not the pub-
lic, but the people who created the data themselves. Besides classical control
charts (for example in quality engineering), many plots of experimental data
fall into this category, because the question is determined at the outset and
the graph is drawn to extract specific values to answer it.

Reality Representation What graphical analysis, presentation graphics, and con-
trol charts have in common is that they are “digital”: some aspect of real-
ity has been measured and translated into numbers, and it is these numbers
which are plotted (temperature, stock price, electric field strength, response
time, . . . whatever).

Reality representation by contrast tries to construct an image that is in some
form analogous to the system under consideration. A regular topographic
map is a simple form of reality representation. More complex computer-
assisted methods include three-dimensional solid body imaging, many ray-
tracing systems, most immersive “virtual reality” methods, and many net-
work flow or relationship connectivity visualization systems.

Data analysis using reality representation is a large, amorphous, and highly
experimental field.

Image Analysis Image analysis takes a two- or (rarely) three-dimensional image of
the system under investigation and tries to detect significant structure in this
image, often using color variations to indicate changes in value — think med-
ical imaging. Image analysis may either be highly automated (using signal-
processing methods), or be done visually. In the latter case, it shares aspects
with graphical analysis.

Statistical Analysis This is the “classical” definition of data analysis. Statistical
analysis typically tries to characterize a data set by calculating some mathe-
matical quantity (such as the mean, the median, or the standard deviation)
from the data. Statistical analysis gives a quantitative answer to a known,
well-posed question.

Statistical analysis works great if we know what questions to ask of the data,
and if we want to perform essentially similar analyses repeatedly (for in-
stance after varying some control parameter in a prescribed fashion). But it is
not applicable if the questions to ask is yet unknown, and it can be mislead-
ing even otherwise, as our Marathon example has shown: statistical analysis

Copyright Manning Publications, 2008

10 2 WHAT IS GRAPHICAL ANALYSIS?

always makes some (silent) assumptions about the data, which may not be
fulfilled in practice. These challenges are well-known in the statistical com-
munity.

Exploratory Data Analysis Exploratory (or Initial) Data Analysis (EDA or IDA)
is a term sometimes used in the statistical literature to describe the initial
examination of data to determine its basic characteristics. Graphs typically
play a large role. What makes it different from graphical analysis is that it is
only seen as precursor to a “real” formal statistical analysis.

2.2 Why Graphical Analysis?

Graphical analysis is a discovery tool: we can use it to reveal as yet unknown
information in data. In comparison to statistical methods, it helps us to discover
new and possibly quite unexpected behavior.

Moreover, it helps us to develop an intuitive understanding of the data and
the information it contains. Since it does not require particular math skills, it is
accessible to anyone with an interest and a certain amount of intuition.

Even if rigorous model-building is our ultimate goal, graphical methods still
need to be the first step, so that we can develop a sense for the data, its behavior and
quality. Knowing this, we can then select the most appropriate formal methods.

2.3 Limitations of Graphical Analysis

Of course, graphical analysis has limitations and its own share of problems.

Graphical analysis doesn’t scale. Graphical analysis is a manual process, which
can’t easily be automated. Each data set is treated as a separate special case, which
is not feasible if there are thousands of data sets.

But this problem is sometimes more apparent than real. It can be remarkably
effective to generate a large number of graphs and just browse them without study-
ing each one in great depth. It is totally possible to scan a few hundred graphs
visually, and doing so may already lead to a high-level hypothesis regarding the
classification of the graphs into just a few sub-groups, which can then be inves-
tigated in detail. (Thank goodness gnuplot is scriptable, so that preparing a few
hundred graphs poses no problem.)

Graphical analysis yields qualitative, not quantitative results. Whether you regard
this as a strength or a weakness depends on your situation. If you are looking for
new behavior, graphical analysis is your friend. If you are trying to determine by
how many percent a new fertilizer treatment increases crop production, statistical
analysis is the way to go.

It takes skill and experience. Graphical analysis is a creative process, using induc-
tive logic to move from observations to hypothesis. There is no pre-scribed set of
steps to move from a data set to conclusions about the underlying phenomena and
not much that can be taught in a conventional, class-room format.

But by the same token, it does not require formal training, either. Ingenuity,
intuition, and curiosity (!) are the most important character traits. Any one can
play this game, if they are interested in finding out what the data tries to tell them.

Copyright Manning Publications, 2008

3 WHAT IS GNUPLOT? 11

3 What is Gnuplot?

Gnuplot is a program to explore data graphically. Its purpose is to generate plots
and graphs from data or functions. It can produce highly polished graphs, suitable
for publication, and simple throw-away graphs, when we are merely playing with
an idea.

Gnuplot is command-line driven: you issue commands at a prompt, and gnu-
plot will redraw the current plot in response. Gnuplot is also interactive: the output
is generated and displayed immediately in an output window. Although gnuplot
can be used as a background process in batch-mode, typical use is highly interac-
tive. On the other hand, its primary user interaction is through a command lan-
guage, not through a point-and-click GUI interface.

Don’t let the notion of a command-language throw you: gnuplot is easy to use
— really easy to use! It takes only one line to read and plot a data file, and most
of the command syntax is straightforward and quite intuitive. Gnuplot does not
require programming, or any deeper understanding of its command syntax to get
started.

So, this is the fundamental workflow of all work with gnuplot: plot, examine,
repeat — until you have found out whatever you wanted to learn from the data.
Gnuplot supports the iterative process model required for exploratory work per-
fectly!

3.1 Gnuplot is not GNU

To dispel one common confusion right away: gnuplot is not GNU software, has
nothing to do with the GNU project, and is not released under the GNU Public
License (GPL). Gnuplot is released under a permissive open-source license.

Gnuplot has been around a long time — a very long time, in fact. It was started
by Thomas Williams and Colin Kelley in 1986. On the gnuplot FAQ, Thomas has
this to say about how gnuplot was started and why it is called the way it is:

I was taking a differential equation class and Colin was taking

Electromagnetics, we both thought it’d be helpful to visualize the

mathematics behind them. We were both working as sys admin for an EE

VLSI lab, so we had the graphics terminals and the time to do some

coding. The posting was better received than we expected, and prompted

us to add some, albeit lame, support for file data.

Any reference to GNUplot is incorrect. The real name of the program is

"gnuplot". You see people use "Gnuplot" quite a bit because many of us

have an aversion to starting a sentence with a lower case letter, even

in the case of proper nouns and titles. gnuplot is not related to the

GNU project or the FSF in any but the most peripheral sense. Our

software was designed completely independently and the name "gnuplot"

was actually a compromise. I wanted to call it "llamaplot" and Colin

wanted to call it "nplot." We agreed that "newplot" was acceptable

but, we then discovered that there was an absolutely ghastly pascal

Copyright Manning Publications, 2008

12 3 WHAT IS GNUPLOT?

program of that name that the Computer Science Dept. occasionally

used. I decided that "gnuplot" would make a nice pun and after a

fashion Colin agreed.

For a long time (about ten years), the stable major version of gnuplot was ver-
sion 3.7.x, until version 4.0.0 was released in 2004. As part of the 4.x release, gnu-
plot has acquired a number of useful new features, including:

• palette-mapped color mode (pm3d), which makes it possible to choose colors
for plots from continuous, user-defined color gradients (“palettes”).

• much better text-handling capabilities, including the ability to read text from
a file and use text as a plot style, support for common string functions and
“enhanced” text mode, allowing the use of formatting commands and special
characters in gnuplot graphs.

• new plot styles: filled curves and boxes, histograms, and vectors.

• improved output handling, including an entirely new interactive terminal
based on the wxt widget set using the Cairo and Pango graphics and font
libraries, resulting in a dramatically improved visual appearance over pre-
vious interactive gnuplot terminals. There are also many marginal improve-
ments to other terminals, including a unified treatment of common pixmap
file formats (GIF, PNG, JPG) using libgd.

• . . . and many more.

The current release of gnuplot is version 4.2.3 (released in March 2008). Gnuplot
continues to be actively developed — if you would like to contribute, subscribe to
the developers’ mailing list gnuplot-beta@lists.sourceforge.net.

3.2 Why Gnuplot?

I have already mentioned the most important reasons why I like gnuplot: easy to
learn, easy to use, excellent support for iterative, exploratory use, yet neverthe-
less scriptable for bulk or offline processing, able to produce publication-quality
graphs.

Here are some other reasons why I believe gnuplot is a good tool for many
situations:

• Stable, mature, actively maintained.

• Free and open-source.

• Available on all three platforms currently in use: Linux/Unix, Windows, Mac
OS X.

• Able to generate polished, publication-quality graphs and offering detailed
control over the final appearance of plots.

Copyright Manning Publications, 2008

4 SUMMARY 13

• Support for all common graphics formats (and quite a few less common
ones).

• Reads regular text files as input. Pretty tolerant regarding the specifics of the
input file format. (No need for the data to be in some special archive file
format!)

• Support for very large datasets (easily many millions of data points); very
fast.

• Modest resource consumption.

3.3 Limitations

It is important to remember that gnuplot is a data plotting tool, nothing more, noth-
ing less. In particular, it is neither a numeric or symbolic workbench, nor a statistics
package. It can therefore only perform rather simple calculations on the data. On
the other hand, it has a very flat learning curve, requiring no programming knowl-
edge and only the most basic math skills.

Gnuplot is also no drawing tool. All its graphs are depictions of some data set,
and it therefore has only very limited support for arbitrary box-and-line diagrams
and none at all for free-hand graphics.

Finally, gnuplot makes no attempt at what I earlier called “reality representa-
tion”. It is a tool for quantitative analysis, and therefore its bread-and-butter are
dot and line plots. It has no support for three-dimensional solid body imaging,
ray-tracing, fish-eye functionality, and similar techniques.

Overall, though, I regard these limitations more as “strengths-in-disguise”: in
the Unix tradition, gnuplot is a rather simple tool, doing (mostly) one thing, and
doing it very, very well.

4 Summary

In this paper, I showed you a couple of examples which demonstrate the power of
graphical methods for understanding data. I have also tried to suggest a suitable
method for dealing with data analysis problems: plot the data, based on the plot
identify the essential features of the data set, then iterate the process to bring out the
behavior you are most interested in, and finally (not always, but often) develop a
mathematical description for the data, which can then be used to make predictions
(which, by their nature, go beyond the information contained in the actual data
set).

Our tool in doing this kind of analysis will be gnuplot. And it is gnuplot and
how to use it, that we will turn to next. Once we have developed the skills to use
gnuplot well, we will return to graphical analysis and discuss useful techniques to
extract the most information possible from a data set, using graphs.

Copyright Manning Publications, 2008

