
1

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/stirk/

SQL Server DMVs in Action
Better Queries with Dynamic Management Views
By Ian Stirk

In this article from chapter 2 of SQL Server DMVs in Action, author Ian Stirk
discusses a quick method of creating temporary tables, which is needed when we
want to loop over all databases on a server, extracting the results as we go.

To save 35% on your next purchase use Promotional Code stirk0235 when you
check out at www.manning.com.

You may also be interested in…

Looping over Databases on a Server

Often, servers contain many databases, and the server’s resources are shared between these databases. This
means that no matter how optimized a given database is, it could still perform suboptimally because another
database on the server is running poorly and hogging the server’s shared resources. Because of that, we should
consider all databases on the server when we inspect the Dynamic Management Views (DMVs) with the goal of
improving performance.

DMVs report data at a server or database level of detail. For example, at the server level, the DMV
sys.dm_os_wait_stats reports the causes of all the waits on the server irrespective of individual databases. But,
sometimes we need to obtain data at the database level of detail, for example, by joining DMV data with database
level data contained in the catalog views. This typically provides us with richer data. As another example, we may
want to retrieve index information from the catalog view sys.indexes; such information includes index name and
type of index.

The data held by sys.indexes is located in each database on the server. In order to extract this index data to
compare the data across all databases on the server, we need to loop around all the databases on the server.
Luckily, Microsoft provides a stored procedure for this operation, the relatively little documented sp_MSForEachDB.

As an example of its use, we can print out the name of each of the databases on the server using the following
command:

EXEC sp_MSForEachDB 'PRINT ''?'';'

Looping over the tables in a database

As an interesting side note, Microsoft also provides another related stored procedure, which loops over the tables
within a given database. For example, to discover the names of each of the tables in a given database together
with the number of rows they contain, you can run the below SQL query:

EXEC sp_MSForEachTable 'PRINT ''?''; SELECT ''?'' as [TableName], COUNT(*) AS
[RowCount] FROM ?;'

This pattern can be interesting for various maintenance tasks, such as marking the tables for recompilation (this
effectively recompiles any stored procedures that use the tables) or updating a table’s statistics.

Now back to our specific DMV use. We need to loop around the databases and join to the relevant database-

specific sys.indexes catalog view so we can obtain some useful information about the index, including the index

http://www.manning.com/stirk/
http://www.manning.com/stirk/
http://www.manning.com/
http://www.manning.com/stirk/

2

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/stirk/

name and type. In the following example, we’ll find the most used indexes to demonstrate the looping over the
databases pattern.

Knowing about the most commonly used indexes is important, because they are the primary means of
accessing data. We should ensure everything about these indexes is optimal, for example, that the statistics are up
to date and have a good sampling percentage and the fill factor is such that we retrieve as much data as possible
for every read. We should also ensure that the level of index fragmentation is low. Alternatively, a highly used
index may indicate that a more optimized index is required but is not available, so SQL Server is forced to use
whatever index is available, resulting in the apparent heavy index usage. Cross-checking this against the missing
indexes, DMV will determine if this is true.

Running the code snippet given in listing 1 will loop over each database on the current server and report on the
10 most used indexes across all databases.

Listing 1 Looping over all databases on a server pattern
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT #A
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (user_seeks + user_scans + user_lookups) AS [Usage]
 , user_updates
 , i.fill_factor
INTO #TempUsage
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE 1=2

EXEC sp_MSForEachDB 'USE [?]; #B
INSERT INTO #TempUsage
SELECT TOP 10
 DB_NAME() AS DatabaseName
 , SCHEMA_NAME(o.Schema_ID) AS SchemaName
 , OBJECT_NAME(s.[object_id]) AS TableName
 , i.name AS IndexName
 , (user_seeks + user_scans + user_lookups) AS [Usage]
 , user_updates
 , i.fill_factor
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
INNER JOIN sys.objects o ON i.object_id = O.object_id
WHERE s.database_id = DB_ID()
 AND i.name IS NOT NULL
 AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
ORDER BY [Usage] DESC' #C

SELECT TOP 10 * FROM #TempUsage ORDER BY [Usage] DESC

DROP TABLE #TempUsage

#A Creating a temporary table to hold the results
#B Looping around all databases
#C Identifying most used indexes

The code snippet in listing 1 first creates a temporary table using a WHERE 1=2 pattern. Often, we want to

create a temporary table to hold the results of any transient data, especially if we are collecting data from various
sources/databases for comparison purposes. The easiest way for us to do this so that we automatically get the
correct column names and datatypes is to use a query that joins the relevant tables but has a WHERE condition of
1=2. Clearly this condition means no rows will be retrieved; however, the temporary table will be created with all

http://www.manning.com/stirk/

3

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/stirk/

the relevant meta information. And for our example, this creates a data structure with the correct names and
datatypes.

Next, we call the stored procedure sp_MSForEachDB, with two parameters. The first parameter specifies the
database to use (this is enumerated and represented by a question mark). The second parameter is the query we
want to run on that database. You’ll notice that we select the 10 most used indexes on each database and store
their details (name and various counters) in the temporary table. Finally, we select the 10 most used indexes from
the temporary table (remember this reflects all databases).

One point to note; for the results to make sense, the number of rows associated with the TOP command given
with the sp_MSForEachDB command must match the number used for the final retrieval from the temporary table.

Summary
The purpose of this article was to explain a common pattern of code that will occur repeatedly. We discussed a
quick method of creating temporary tables, and this is needed when we want to loop over all databases on the
current server, extracting the results as we go.

http://www.manning.com/stirk/

4

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/stirk/

Here are some other Manning titles you might be interested in:

SQL Server MVP Deep Dives
Edited by Paul Nielsen, Kalen Delaney, Greg Low, Adam Machanic,
Paul S. Randal, and Kimberly L. Tripp

SQL Server 2008 Administration in Action
Rod Colledge

ASP.NET MVC in Action
Jeffrey Palermo, Ben Scheirman, and Jimmy Bogard

Last updated: June 8, 2011

http://www.manning.com/stirk/
http://www.manning.com/nielsen
http://www.manning.com/colledge/
http://www.manning.com/palermo/
http://www.manning.com/nielsen
http://www.manning.com/colledge/
http://www.manning.com/palermo/

	Summary

